Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions.

نویسندگان

  • Yu-Feng Wang
  • Glenn I Hatton
چکیده

Astroglial-neuronal interactions are important in brain functions. However, roles of glial fibrillary acidic protein (GFAP) in this interaction remain unclear in acute physiological processes. We explored this issue using the supraoptic nucleus (SON) in lactating rats. At first, we identified the essential role of astrocytes in the milk-ejection reflex (MER) by disabling astrocytic functions via intracerebroventricular application of l-aminoadipic acid (l-AAA). l-AAA blocked the MER and reduced GFAP levels in the SON. In brain slices, l-AAA suppressed oxytocin (OT) neuronal activity and EPSCs. Suckling reduced GFAP in immunocytochemical images and in Western blots, reductions that were partially reversed after the MER. OT, the dominant hormone mediating the MER, reduced GFAP expression in brain slices. Tetanus toxin suppressed EPSCs but did not influence OT-reduced GFAP. Protease inhibitors did not influence OT-reduced GFAP images but blocked the degradation of GFAP molecules. In the presence of OT, transient 12 mm K(+) exposure, simulating effects of synchronized bursts before the MER, reversed OT-reduced GFAP expression. Consistently, suckling first reduced and then increased the expression of aquaporin 4, astrocytic water channels coupled to K(+) channels. Moreover, GFAP molecules were associated with astrocytic proteins, including aquaporin 4, actin, and glutamine synthetase and serine racemase. GFAP-aquaporin 4 association decreased during initial suckling and increased after the MER, whereas opposite changes occurred between GFAP and actin. MER also decreased the association between GFAP and glutamine synthetase. These results indicate that suckling elicits dynamic glial neuronal interactions in the SON; GFAP plasticity dynamically reflects OT neuronal activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus.

Neurons, including their synapses, are generally ensheathed by fine processes of astrocytes, but this glial coverage can be altered under different physiological conditions that modify neuronal activity. Changes in synaptic connectivity accompany astrocytic transformations so that an increased number of synapses are associated with reduced astrocytic coverage of postsynaptic elements, whereas s...

متن کامل

Invited Review CALL FOR PAPERS Neurohypophyseal Hormones: From Genomics and Physiology to Disease Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus

Theodosis, Dionysia T., Andrei Trailin, and Dominique A. Poulain. Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 290: R1175–R1182, 2006; doi:10.1152/ajpregu.00755.2005.—Neurons, including their synapses, are generally ensheathed by fine processes of astrocytes, but th...

متن کامل

Activity-dependent structural and functional plasticity of astrocyte-neuron interactions.

Observations from different brain areas have established that the adult nervous system can undergo significant experience-related structural changes throughout life. Less familiar is the notion that morphological plasticity affects not only neurons but glial cells as well. Yet there is abundant evidence showing that astrocytes, the most numerous cells in the mammalian brain, are highly mobile. ...

متن کامل

Astrocyte and Neuronal Plasticity in the Somatosensory System

Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a chan...

متن کامل

Chronic vs. Acute Interactions between Supraoptic Oxytocin Neurons and Astrocytes during Lactation: Role of Glial Fibrillary Acidic Protein Plasticity

In this article, we review studies of astrocytic-neuronal interactions and their effects on the activity of oxytocin (OXT) neurons within the magnocellular hypothalamo-neurohypophysial system. Previous work over several decades has shown that withdrawal of astrocyte processes increases OXT neuron excitability in the hypothalamic supraoptic nucleus (SON) during lactation. However, chronically di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2009